
—

© 2024 ABB. All rights reserved.

MSc Thesis Presentation
Efficient Online Learning in Resource-Constrained Automation Environments

1 6 A U G 2 0 2 4 , M A R C O D I F R A N C E S C O

—

© 2024 ABB. All rights reserved. Slide 2

Why this project?
Robotic & Edge Computing

Robots tasks: Welding or Package sorting

Robots require: High accuracy Detect issues

Machine Learning: Calibration Anomaly detection

ML models deployed in Edge Device: Small hardware close to the source

Provides:

- Small latency

- Privacy: cannot transmit data covered by IP rights

—

© 2024 ABB. All rights reserved. Slide 3

Why this project?
Online Machine Learning

Degradation → Robots changes behaviour

Model needs constant updates

Domain: Online Machine Learning

Why not Reinforcement Learning?

- Computationally expensive

—

© 2024 ABB. All rights reserved. Slide 4

ML Models

Decision Trees:

- Fast execution in CPU

Mondrian Forests:

- Adapts to changing environment

- Algorithm is very fast: 1 order of magnitude faster than other
state-of-the-art decision tree models

—

© 2024 ABB. All rights reserved. Slide 5

Project Outline
The 3 phases

Model Development Optimization Robotic Application

 [Images] Flaticon.com – Freepik, Freepik, Smalllikeart

https://www.flaticon.com/free-icon/hierarchical-structure_1042060
https://www.flaticon.com/free-icon/clock_1584892
https://www.flaticon.com/free-icon/robotic-arm_1404716

—

© 2024 ABB. All rights reserved. Slide 6

Model Development

Current models: Python1,2,3 Java4,5

- Additional software in the controller Python Interpreter JVM

- No granular control of the memory

Compressed model: Onnx / TensorFlow Lite

- Not suitable for incremental learning

Implementation in Rust:

- Performance

- Memory safety

- LightRiver library

Software

 [1, Paper] River - Montiel, J., et al. (2021). River: Machine learning for streaming data in Python online-ml/river (github.com)
 [2, Paper] OneLearn - Wang, Y., et al. Onelearn: A Unified and Distributed Machine Learning Platform with High Performance. onelearn/onelearn (github.com)
 [3, Repository] Vowpal Wabbit - Vowpal Wabbit (vowpalwabbit.org)
 [4, Paper] MOA - Bifet, A., et. al (2018). Machine Learning for Data Streams: With Practical Examples in MOA. The MIT Press. https://doi.org/10.7551/mitpress/10654.001.0001
 [3, Repository] CapyMOA - adaptive-machine-learning/CapyMOA (github.com)

https://github.com/online-ml/river
https://github.com/onelearn/onelearn
https://vowpalwabbit.org/
https://doi.org/10.7551/mitpress/10654.001.0001
https://github.com/adaptive-machine-learning/CapyMOA

—

© 2024 ABB. All rights reserved. Slide 7

Model Development
Python vs Rust

Model: Mondrian Forests

Dataset: 100.000 samples, 2 features

Classification:

- Rust 3 times faster than Python

- 35 000 samples/sec

Regression:

- Rust 28 times faster than Python

- 213 000 samples/sec

—

© 2024 ABB. All rights reserved. Slide 8

Project Outline
The 3 phases

Model Development Optimization

 [Images] Flaticon.com – Freepik, Freepik, Smalllikeart

Robotic Application

https://www.flaticon.com/free-icon/hierarchical-structure_1042060
https://www.flaticon.com/free-icon/clock_1584892
https://www.flaticon.com/free-icon/robotic-arm_1404716

—

© 2024 ABB. All rights reserved. Slide 9

Optimization
Why memory layout matters?

 [1, Website] performance - Approximate cost to access various caches and main memory?
 [2, Specs] Dataset: 20 features, for classification 5 labels. Cache line of 4KB.

Robot controller: limited amount of compute available, additional hardware is costly

 → Optimizations can be applied

Load RAM to Cache: organized in blocks of ~2 KB

CPU cache is ~100 times faster than DDR memory1

https://stackoverflow.com/questions/4087280/approximate-cost-to-access-various-caches-and-main-memory

—

© 2024 ABB. All rights reserved. Slide 10

Optimization

Representation of a decision tree in memory:

- Vector

- Struct

One cache line1:

- Classification: 7 nodes

- Regression: 29 nodes

New memory layout matters?

 [1, Website] performance - Approximate cost to access various caches and main memory?
 [2, Specs] Dataset: 20 features, for classification 5 labels. Cache line of 4KB.

https://stackoverflow.com/questions/4087280/approximate-cost-to-access-various-caches-and-main-memory

—

© 2024 ABB. All rights reserved. Slide 11

Optimization
Applying optimizations

 [*, Picture] Very simplified version of the algorithm. The algorithm is more complex than this.
 [1, Picture, Paper] Chen, K.-H., et al. (2022). Efficient Realization of Decision Trees for Real-Time Inference. ACM Transactions on Embedded Computing Systems, 21(6), 1–26. https://doi.org/10.1145/3508019

Decision Tree: Sorting nodes by probability

Related works: Only Offline
 → Our contribution: Implement Online

https://doi.org/10.1145/3508019

—

© 2024 ABB. All rights reserved. Slide 12

Results
Optimization

Dataset: 500.000 samples

Time for each iteration
“without optimizations” vs “with optimizations”

 No sort Sort every 1 000 iterations
 (optimization time is removed)

Performance is chunked every 25 000 iterations

Result: each iteration is in median

18% faster for Regression

8% for Classification

—

© 2024 ABB. All rights reserved. Slide 13

Optimization
Node access patter

Mondrian Forest behavior:

- Simple Visit - Inference

- Add a node - Train

—

© 2024 ABB. All rights reserved. Slide 14

Optimization

Case: Simple visit

Spatial locality works when doing a simple visit root to leaf.

Node access patter

—

© 2024 ABB. All rights reserved. Slide 15

Node access patter

Case: Add a node

Spatial locality never used in this case.

Node access patter

—

© 2024 ABB. All rights reserved. Slide 16

Why are optimizations working?
Breaking down the execution: Train vs Inference

~7% ~34%

—

© 2024 ABB. All rights reserved. Slide 17

Are we decreasing the number of non-sequential accesses?

e.g., sequence [1 → 2 → 3] → [1 → 2 → 6] → [1 → 4 → 5]

- 4 nodes “sequentially access”

- 5 nodes “non-sequential access”

Are nodes accessed sequentially?

—

© 2024 ABB. All rights reserved. Slide 18

Are nodes accessed sequentially?

Optimizing every 1000 iterations.

—

© 2024 ABB. All rights reserved. Slide 19

Optimization
Sorting Cost vs. Gain

Dataset: 500.000 samples

Sort every 100.000 sample

Cost: 0.36 seconds

Gain: 0.09 seconds

Model add nodes: 74% of the times

Assuming linearity in Cost and Gain:

- We have a gain when adding nodes less often than 16% of the
times

—

© 2024 ABB. All rights reserved. Slide 20

Project Outline
The 3 phases

Model Development Optimization Robotic Application

 [Images] Flaticon.com – Freepik, Freepik, Smalllikeart

https://www.flaticon.com/free-icon/hierarchical-structure_1042060
https://www.flaticon.com/free-icon/clock_1584892
https://www.flaticon.com/free-icon/robotic-arm_1404716

—

© 2024 ABB. All rights reserved. Slide 21

Robotic Application

Raising number of trees of the forest

- Memory footprint: increases linearly (121 ± 3 MB)

- Accuracy / MSE: have diminishing returns

Depending on the memory availability -> Choose necessary size of forest
e.g. 500 MB available => 4 trees

—

© 2024 ABB. All rights reserved. Slide 22

Future works

Problem: When we apply the optimizations, the robot freezes

- Apply it in background

- Sort in iteration idle time

Model optimization:

- Floating Point 32 -> 16

- Model Limitation: Limit number of nodes

Problem: When the robot turns off, we lose the progress

- Export/Load Weights

—

© 2024 ABB. All rights reserved. Slide 23

Acknowledgements

Kuan Chen

Supervisor

Jordis Herrmann

Supervisor
Jonathan Styrud

Advisor
Mikael Norrlöf

Advisor

Adil Zouitine
Code review

Saulo Martiello Mastelini
Code review

Max Halford
Advisor

	Slide 1: MSc Thesis Presentation
	Slide 2: Why this project?
	Slide 3: Why this project?
	Slide 4: ML Models
	Slide 5: Project Outline
	Slide 6: Model Development
	Slide 7: Model Development
	Slide 8: Project Outline
	Slide 9: Optimization
	Slide 10: Optimization
	Slide 11: Optimization
	Slide 12: Optimization
	Slide 13: Optimization
	Slide 14: Optimization
	Slide 15: Node access patter
	Slide 16: Why are optimizations working?
	Slide 17: Are nodes accessed sequentially?
	Slide 18: Are nodes accessed sequentially?
	Slide 19: Optimization
	Slide 20: Project Outline
	Slide 21: Robotic Application
	Slide 22: Future works
	Slide 23: Acknowledgements
	Slide 24

