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Why this project?
Robotic & Edge Computing

Robots tasks: Welding or Package sorting

Robots require: High accuracy Detect issues

Machine Learning: Calibration  Anomaly detection

ML models deployed in Edge Device: Small hardware close to the source

Provides:

- Small latency

- Privacy: cannot transmit data covered by IP rights
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Why this project?
Online Machine Learning

Degradation → Robots changes behaviour

Model needs constant updates

Domain: Online Machine Learning

Why not Reinforcement Learning?

- Computationally expensive
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ML Models

Decision Trees:

- Fast execution in CPU

Mondrian Forests:

- Adapts to changing environment

- Algorithm is very fast: 1 order of magnitude faster than other 
state-of-the-art decision tree models
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Project Outline
The 3 phases

Model Development Optimization Robotic Application

 [Images] Flaticon.com – Freepik, Freepik, Smalllikeart

https://www.flaticon.com/free-icon/hierarchical-structure_1042060
https://www.flaticon.com/free-icon/clock_1584892
https://www.flaticon.com/free-icon/robotic-arm_1404716
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Model Development

Current models:                 Python1,2,3              Java4,5

- Additional software in the controller     Python Interpreter     JVM

- No granular control of the memory

Compressed model: Onnx / TensorFlow Lite

- Not suitable for incremental learning

Implementation in Rust:

- Performance

- Memory safety

- LightRiver library

Software

 [1, Paper] River - Montiel, J., et al. (2021). River: Machine learning for streaming data in Python online-ml/river (github.com)
 [2, Paper] OneLearn - Wang, Y., et al. Onelearn: A Unified and Distributed Machine Learning Platform with High Performance. onelearn/onelearn (github.com)
 [3, Repository] Vowpal Wabbit - Vowpal Wabbit (vowpalwabbit.org)
 [4, Paper] MOA - Bifet, A., et. al (2018). Machine Learning for Data Streams: With Practical Examples in MOA. The MIT Press. https://doi.org/10.7551/mitpress/10654.001.0001
 [3, Repository] CapyMOA - adaptive-machine-learning/CapyMOA (github.com)

https://github.com/online-ml/river
https://github.com/onelearn/onelearn
https://vowpalwabbit.org/
https://doi.org/10.7551/mitpress/10654.001.0001
https://github.com/adaptive-machine-learning/CapyMOA
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Model Development
Python vs Rust

Model: Mondrian Forests

Dataset: 100.000 samples, 2 features

Classification:

- Rust 3 times faster than Python

- 35 000 samples/sec

Regression:

- Rust 28 times faster than Python

- 213 000 samples/sec
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Project Outline
The 3 phases

Model Development Optimization
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Robotic Application

https://www.flaticon.com/free-icon/hierarchical-structure_1042060
https://www.flaticon.com/free-icon/clock_1584892
https://www.flaticon.com/free-icon/robotic-arm_1404716


—

© 2024 ABB. All rights reserved. Slide 9

Optimization
Why memory layout matters?

 [1, Website] performance - Approximate cost to access various caches and main memory? 
 [2, Specs] Dataset: 20 features, for classification 5 labels. Cache line of 4KB.

Robot controller: limited amount of compute available, additional hardware is costly

 → Optimizations can be applied

Load RAM to Cache: organized in blocks of ~2 KB

CPU cache is ~100 times faster than DDR memory1

https://stackoverflow.com/questions/4087280/approximate-cost-to-access-various-caches-and-main-memory
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Optimization

Representation of a decision tree in memory:

- Vector

- Struct

One cache line1:

- Classification: 7 nodes

- Regression: 29 nodes

New memory layout matters?

 [1, Website] performance - Approximate cost to access various caches and main memory? 
 [2, Specs] Dataset: 20 features, for classification 5 labels. Cache line of 4KB.

https://stackoverflow.com/questions/4087280/approximate-cost-to-access-various-caches-and-main-memory


—

© 2024 ABB. All rights reserved. Slide 11

Optimization
Applying optimizations

 [*, Picture] Very simplified version of the algorithm. The algorithm is more complex than this.
 [1, Picture, Paper] Chen, K.-H., et al. (2022). Efficient Realization of Decision Trees for Real-Time Inference. ACM Transactions on Embedded Computing Systems, 21(6), 1–26. https://doi.org/10.1145/3508019

Decision Tree: Sorting nodes by probability

Related works: Only Offline
 → Our contribution: Implement Online

https://doi.org/10.1145/3508019
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Results
Optimization

Dataset: 500.000 samples

Time for each iteration
“without optimizations” vs “with optimizations”

           No sort                     Sort every 1 000 iterations
                                         (optimization time is removed)

Performance is chunked every 25 000 iterations

Result: each iteration is in median

18% faster for Regression

8% for Classification
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Optimization
Node access patter

Mondrian Forest behavior:

- Simple Visit - Inference

- Add a node - Train



—

© 2024 ABB. All rights reserved. Slide 14

Optimization

Case: Simple visit

Spatial locality works when doing a simple visit root to leaf.

Node access patter
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Node access patter

Case: Add a node

Spatial locality never used in this case.

Node access patter
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Why are optimizations working?
Breaking down the execution: Train vs Inference

~7% ~34%
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Are we decreasing the number of non-sequential accesses?

e.g., sequence [1 → 2 → 3] → [1 → 2 → 6] → [1 → 4 → 5]

- 4 nodes “sequentially access”

- 5 nodes “non-sequential access”

Are nodes accessed sequentially?
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Are nodes accessed sequentially?

Optimizing every 1000 iterations.
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Optimization
Sorting Cost vs. Gain

Dataset: 500.000 samples

Sort every 100.000 sample

Cost: 0.36 seconds

Gain: 0.09 seconds

Model add nodes: 74% of the times

Assuming linearity in Cost and Gain:

- We have a gain when adding nodes less often than 16% of the 
times
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Project Outline
The 3 phases

Model Development Optimization Robotic Application
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Robotic Application

Raising number of trees of the forest

- Memory footprint: increases linearly (121 ± 3 MB)

- Accuracy / MSE: have diminishing returns

Depending on the memory availability -> Choose necessary size of forest
e.g. 500 MB available => 4 trees
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Future works

Problem: When we apply the optimizations, the robot freezes

- Apply it in background

- Sort in iteration idle time

Model optimization:

- Floating Point 32 -> 16

- Model Limitation: Limit number of nodes

Problem: When the robot turns off, we lose the progress

- Export/Load Weights
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