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Why this project?
Robotic & Edge Computing

Robots tasks: Welding or Package sorting

Robots require: High accuracy Detect issues
Machine Learning: Calibration Anomaly detection

ML models deployed in Edge Device: Small hardware close to the source
Provides:

- Small latency

- Privacy: cannot transmit data covered by IP rights
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Why this project? Data Stream
Online Machine Learning .|I| sata 1 .III Data 2 BUDH Sata 3

Degradation - Robots changes behaviour

Model needs constant updates LIII ﬁ@-}@——b@qooo
/ Initial

Domain: Online Machine Learning Data Model 1 Model 2 Model 3

E@'—?‘-

Why not Reinforcement Learning?

- Computationally expensive —

A
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ML Models
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Project Outline
The 3 phases

Model Development
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https://www.flaticon.com/free-icon/hierarchical-structure_1042060
https://www.flaticon.com/free-icon/clock_1584892
https://www.flaticon.com/free-icon/robotic-arm_1404716

Model Development
Software

Current models: Python'23 Java*®

! !

Additional software in the controller Python Interpreter JVM

No granular control of the memory

Compressed model: Onnx / TensorFlow Lite

Not suitable for incremental learning

Implementation in Rust:

Performance
Memory safety

LightRiver library

[1, Paper] River - Montiel, J., et al. (2021). River: Machine learning for streaming data in Python online-ml/river (github.com)

[2, Paper] OneLearn - Wang, Y., et al. Onelearn: A Unified and Distributed Machine Learning Platform with High Performance. onelearn/onelearn (github.com)

[3, Repository] Vowpal Wabbit - Vowpal Wabbit (vowpalwabbit.org)

[4, Paper] MOA - Bifet, A., et. al (2018). Machine Learning for Data Streams: With Practical Examples in MOA. The MIT Press. https://doi.org/10.7551/mitpress/10654.001.0001

[3, Repository] CapyMOA - adaptive-machine-learning/CapyMOA (github.com)
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https://github.com/online-ml/river
https://github.com/onelearn/onelearn
https://vowpalwabbit.org/
https://doi.org/10.7551/mitpress/10654.001.0001
https://github.com/adaptive-machine-learning/CapyMOA

Model Development
Python vs Rust

Model: Mondrian Forests

Dataset: 100.000 samples, 2 features

Classification:
- Rust 3 times faster than Python
- 35000 samples/sec

Regression:
- Rust 28 times faster than Python
- 213 000 samples/sec
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Execution Time (sec)
(=]

Execution Time of Python vs Rust for Classification

Python

Programming Languages

(b) Classification

Rust

Execution Time {sec)
(=]

Execution Time of Python vs Rust for Regression

Python
Programming Languages

(a) Regression

Rust




Project Outline
The 3 phases

Model Development
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https://www.flaticon.com/free-icon/hierarchical-structure_1042060
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Optimization
Why memory layout matters?

< > RAM

Memory mapping
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Cache Line

Vector
Item requested
Neighbor(s) loaded by spatial locality

[1, Website] performance - Approximate cost to access various caches and main memory?
B (2, Specs] Dataset: 20 features, for classification 5 labels. Cache line of 4KB.
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https://stackoverflow.com/questions/4087280/approximate-cost-to-access-various-caches-and-main-memory

Optimization
New memory layout matters?

Representation of a decision tree in memory: Left

Memory mapping

Split Value

Split Feature
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One cache linel: I ‘I
: I Cache Line
- Classification: 7 nodes
" ) Node N1 Node N2 Node N3 Node N4
. emory mapping
- Regression: 29 nodes N —————_—— -
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Cache Line

Vector
Iltem requested

Neighbor(s) loaded by spatial locality

[1, Website] performance - Approximate cost to access various caches and main memory?
B (2, Specs] Dataset: 20 features, for classification 5 labels. Cache line of 4KB.
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https://stackoverflow.com/questions/4087280/approximate-cost-to-access-various-caches-and-main-memory

Optimization
Applying optimizations

Decision Tree: Sorting nodes by probability

Related works: Only Offline
— Our contribution: Implement Online

B [*, Picture] Very simplified version of the algorithm. The algorithm is more complex than this.

naive mapping

ni

nl

n

ni

nd

ns

né

—— cache line

cache line

E g

optimized mapping

e

ni

n2

noé

nl

n3

nd

#——— cache line

e

= [1, Picture, Paper] Chen, K.-H., et al. (2022). Efficient Realization of Decision Trees for Real-Time Inference. ACM Transactions on Embedded Computing Systems, 21(6), 1-26. https://doi.org/10.1145/3508019
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Optimization
Results

Dataset: 500.000 samples

Time for each iteration
“without optimizations” vs “with optimizations”

! !

No sort Sort every 1 000 iterations
(optimization time is removed)

Performance is chunked every 25 000 iterations

Result: each iteration is in median
18% faster for Regression

8% for Classification
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Total execution time per iteration on Regression task
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Time per iteration (us)

[ Without Optimization
[ With Optimization
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Optimization
Node access patter

Mondrian Forest behavior:
Simple Visit - Inference

Add a node - Train

© 2024 ABB. All rights reserved. Slide 13

Simple visit

Add a node



Optimization
Node access patter

Case: Simple visit

Spatial locality works when doing a simple visit root to leaf.
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Step A Step B Step C Step D Step E
Visit 1 Visit 2 Visit and Update 2 Update 1
update 3
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QO Currently visited node(s)
O Node in stack trace



Node access patter
Node access patter

Case: Add a node Step A Step B Step C Step D
i i i i Update 2.
Spatial locality never used in this case. Add 0 2  parent (5) Update 5 with Update 1 with

Visit 2 and a sibling (6) values from 6 and 2 values from 5 and 3

® @ ©

/% 2 /\

@@@\@ /@\@@@
DO ® 00 OO0 O

O Current visited node(s)
QO Node in stack
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Why are optimizations working?
Breaking down the execution: Train vs Inference

Train execution time per iteration on Regression task

€
Category
[ Without Optimization - Train Time T
[ With Optimization - Train Time
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I ~7%

Step D

Update 1 with
values from 5 and 3
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Inference execution time per iteration on Regression task
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Are nodes accessed sequentially?

Are we decreasing the number of non-sequential accesses?
e.g.,sequence[1-2->3]>[1->2->6]>[1->4->5]

- 4 nodes “sequentially access”

- 5nodes “non-sequential access”

© 2024 ABB. All rights reserved. Slide 17



Are nodes accessed sequentially?

Optimizing every 1000 iterations.

Ratio of sequential accesses in a run without optimization for Classification

100 -
80 -
>
© 60 - Access Type
5 Bl Sequential accesses
o I Non-sequential accesses
& 40 A
20 A
0 J

0 25 50 75 100 125 150 175 200
Iteration (thousands)
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Ratio of sequential accesses in a run with optimization for Classification
100 -

Percentage

80 1

60 1

40 1

201

Access Type
Bl Sequential accesses
Bl Non-sequential accesses

0 25 50 75 100 125 150 175 200

Iteration (thousands)




Time Cost over Size of the Tree for Regression

350 4

Optimization
Sorting Cost vs. Gain
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Project Outline
The 3 phases

Model Development
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Optimization

Robotic Application
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Robotic Application

Raising number of trees of the forest
- Memory footprint: increases linearly (121 + 3 MB)

- Accuracy / MSE: have diminishing returns

Depending on the memory availability -> Choose necessary size of forest
e.g. 500 MB available => 4 trees

© 2024 ABB. All rights reserved. Slide 21

Memory Footprint (MB)

Memory Footprint over Number of Trees for Regression

Number of Trees

Mean Squared Error (MSE)

MSE over Number of Trees for Regression

0.13 1

0.12 1

0.11 A

0.10 -

0.09 -

0.08 -

Number of Trees



Future works

Problem: When we apply the optimizations, the robot freezes
- Apply itin background

- Sortin iteration idle time
Model optimization:
- Floating Point 32 -> 16

- Model Limitation: Limit number of nodes

Problem: When the robot turns off, we lose the progress

- Export/Load Weights
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