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Dataset



Radar

Radar uses Radio waves to create a radar echo map
Radar measures the reflectivity value (Z)

Reflectivity value is transformed in Decibel (dBZ)

Radar echo map




Dataset

MeteoTrentino radar dataset
Image size 480x480px

Window of 25 frames
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Prediction target: 20 frames

Input: 5 radar scans




Thresholding

Input threshold — Set pixel value below threshold to O

- Why? Machine learning models learn faster with
less irrelevant information




Thresholding

Threshold: 0.5

Output threshold — Used in output and image

- If pixel value 2 threshold — Event happened
- If pixel value < threshold — Event did not happen




Model performance metrics

Contingency table used for comparison of

Observed event
Observed Event vs Forecast

Contingency table

Performance metrics: u X
false alarms False
FAR = ; .
hits + false alarms u Hit alarm
poD — __ TMts. Forecast
hits + misses x
: Miss Hit
ST hits

" hits + misses + false alarms



Model performance plot

1.0 10
Roebber plot used to represent the metrics: )
0.8 - 0.8
- Success Ratio (1-False alarm rate) §
- Probability of detection §
- Critical Success Index g - "
Features the Conditional Bias %: 0.4 -
3 0.3

0.2 1

0.0 0.2 0.4 0.6 0.8 1.0
Success Ratio



Models



S-PROG

Mathematical method presented in 2003

Decomposes the filed in different level using the

fourier transformation decomposition

Computes Advection Matrix using

semi-lagrangian extrapolation method
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S-PROG

Mathematical method presented in 2003

Decomposes the filed in different level using the

fourier transformation decomposition

Computes Advection Matrix using

semi-lagrangian extrapolation method
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Trajectory GRU

Machine learning model presented in 2017
Uses a Convolutional Recurrent Neural Network
Solves the Location-Invariant problem

Uses a Balanced Loss
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Trajectory GRU

Machine learning model presented in 2017
Uses a Convolutional Recurrent Neural Network
Solves the Location-Invariant problem

Uses a Balanced Loss
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Convolutional LSTM
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Location-invariant filter

H,

o—
|

./

A

X

H> H;

Trajectory RNN

Hy

H,



Rain Rate (mm/h) Proportion (%) Weight

n 0<x<0.5 90.25 1
Trajectory GRU 05 < x <2 i
2% xah 2.46 2
5<x <10 1.35 5
Machine learning model presented in 2017 10 = % <40 .14 10
30 < x 0.42 30
Uses a Convolutional Recurrent Neural Network
20 480 480
A 2
. . / = = -
Solves the Location-Invariant problem B'—MoE = — & 21 21 21 Wn,ij(Tnij = Tniij)
n =17
Uses a Balanced Loss St 250420

B—MAE = —+ Z D Wnilags = Eng

n=1i=1 j=1



IDA-LSTM

Machine learning model presented in 2021
Introduced Interaction and Dual Attention mechanisms

Solves the problem of high intensity precipitation

Input frames Output frames
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Machine learning model presented in 2021
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Results



IDA-LSTM (2021)

Model tested with patch size 16 and 40

Used a huge amount of video Video
Memory (40GB)

Able to learn complex structures
Strongly underestimated precipitation

Unable to retain long-term structures

Ground
truth

Prediction
Patch
16x16

Prediction
Patch
40x40
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Frame 3
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|
False Alarm Rate (FAR)
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Trajectory GRU (2017)
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Trained on

- multiple input thresholds

| Input threshold - Iterations
=== 0.01 mm/h - 100k iter
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Probability of Detection (POD)
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- multiple output thresholds 03 4
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- 100k and 200k model's iterations === 0.03 mm/h - 200k iter — ~
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=== 0.3 mm/h - 200k iter




False Alarm Rate (FAR)
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The model achieves better results for low values \

Keeps a balanced conditional bias
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Wrap up

S-PROG (2003)

Able to predict high values
Unable to get the evolution

Trajectory GRU (2017)

Good performance in low prec,
but no high values

IDA-LSTM (2021)

Strongly underestimates high
and low values

Ground
truth

S-PROG

Trajectory
GRU

IDA-LSTM

Frame 1

Frame 2

Frame 3
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Extra content Models

- S-PROG (2003)
Dataset - Math details
- Trajectory GRU (2017)
- Transformation in Decibel - Location invariant problem
- Iteration vs Epoch - Convolution details
- Dataset window shift - LR, Optimizer

- IDA-LSTM (2021)

Configuration
- Horrible performance explanation

- Dataset split



Thank you!

Trento, 14t March 2022



Dataset - Split

- June 11,2010, to December 31,2019
- Split at the end of 2017

- 362,233 total frames
193,611 training
168,622 frames

- Spatial resolution of 500m
- Picture size of 480x480px
- Diameter 240km



TrajGRU - Location invariant problem

In ConvLSTM weights are fixed for all the " H‘
locations E E F ’
This model proposes the Location-invariant filter Y (\t At X,
Here recurrent connections are dynamically ¢

determined
Egi=s
‘
Meaning it considers how an object moves making
X A3 Xy

the prediction (convolution) is moving 2



TrajGRU - Configuration

- Thresholds -
Input (mm/h): 0.01,0.03,0.1,0.3 -
Output (mm/h): 0.1,0.5, 1, 5, 10, 30, 50

- LOC: 4555 lines

- Convolution: stride 2 -

- Batchsize: 2

- Learning rate: 10

- lterations: 200.000

- Saving frequency: 10.000

- Optimizer:
Adam
Weight_decay: 10°

GPU: NVidia GTX 1080, 8GB memory
Training

Iterations: 200.000

Time: 96 hours
Testing

Iterations: 80.000

Time: 36 hours



IDA-LSTM configuration

- Patchsize: 16x16px - Train1:

- LOC:7452lines - Patchsize: 16x16px

- Filtersize: 5 - GPU: NVidia GTX 1080, 8GB memory
. - lterations: 80.000

- Stride: 1 - Full training time: 55 hours

- Batchsize: 1 . Train?2

- Iteration: 80.000 - Patch size: 40x40px

- Loss:L1+L2loss - GPU:A100 Tensor Core

- Optimizer: - lterations: 15.000
- Adam - Fulltraining time: 192 hours

- Weight_decay: 10



S-PROGmathdetails g B

.........................

Uses Autoregressive model Lag2 Image 1 Image 2 Part of motion field

Approximates the Lagrangian space to separate

- motion of the field I(az, Y, t)
- temporal evolution field i — d:B/dt
v=dy/dt
Ox oy ot



Intensita precipitazione (mmv/h)
del 21/07/2021 alle 18:45
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Model Deployment

The model was deployed using:

- Docker container

- Server function (Azure function app)
- 1.5GBram

- ~23.5sectoexecute

It's going to replace MXNET model in MeteoTrentino website:

https://content.meteotrentino.it/dati-meteo/radar/loop/radar inc Temp N.aspx



https://content.meteotrentino.it/dati-meteo/radar/loop/radar_inc_Temp_N.aspx

